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Abstract
Basis sets incorporating the interelectronic distance r12 are employed in
variational calculations of the non-relativistic ground-state energies and
pressures of a helium atom confined at the centre of an impenetrable spherical
cavity and results are presented for a series of cavity radii Rc. The calculated
values asymptotically approach the correct values in the limits Rc → 0 and
Rc → ∞, and a simple analytical expression is obtained which makes accurate
predictions for small cavities. The same method is also used to study two
penetrable cavities modelled by Gaussian and harmonic potential wells. It is
concluded that the present results are the most accurate currently available for
a confined helium atom. The calculation method employs Gaussian quadrature
to evaluate integrals and can very easily be adapted to any spherical confining
potential.

PACS numbers: 31.15.−p, 31.15.Ar, 31.25Eb

1. Introduction

There have been many studies of confined atomic systems over the years, starting with the early
pioneering work of Michels et al [1] more than 70 years ago, which was further developed by
Sommerfeld and Welker [2] and by De Groot and Ten Seldam [3]. Of particular interest was
the effects of high pressure on a compressed hydrogen atom and the ground-state polarizability
was estimated for a series of confinement radii [1]. Since then many investigations have been
undertaken and the compressed hydrogen atom is now well understood when enclosed in either
impenetrable or penetrable cavities of both spherical and non-spherical shape; we do not give
an extensive list here but refer the reader to recent comprehensive reviews [4–9]. An atom
enclosed in an impenetrable cavity is, of course, a highly idealized model and its limitations
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were clearly recognized [3]. However, as pointed out in Fowler’s extensive work on 1-electron
problems [10], it does serve as a framework for discussing the properties of localized systems.

Helium, and other, atoms have, by contrast, received much less attention. As helium
plays a central rôle in the study of multi-electron systems it is thus desirable to understand
its behaviour under compression, particularly as the unconfined atom is now comprehensively
documented to extremely high accuracy [11, 12]. In the current paper we therefore implement
a high-accurate study of the ground-state energy levels of a helium atom confined at the centre
of a spherical cavity, of finite radius Rc, and thus determine the energies of the atom under
pressure. As will be seen the results obtained are the most reliable yet achieved for this
system. The current implementation of the approach used here allows penetrable potentials
to be incorporated in a straightforward manner; such potentials are thought to be desirable
in practice to model confined systems [13] and we therefore also present some results for
penetrable potentials.

2. The non-relativistic Schrödinger equation for a confined helium-like atom

We consider the non-relativistic Schrödinger equation[
−1

2
∇2

1 − 1

2
∇2

2 − Z

r1
− Z

r2
+

1

r12
+ Vc(r1, r2)

]
�(r1, r2) = E�(r1, r2), (1)

for a helium-like atom, with nuclear charge Z, enclosed in a spherical cavity, of radius Rc.
The nucleus is assumed fixed at the centre of the cavity and we note that, for finite Rc, it is not
therefore possible to separate out the translational motion of the centre of mass of the system.
Vc(r1, r2) is a confinement potential used to model the effects of pressure on the atom. For
example, if the atom is enclosed within an impenetrable spherical cavity then

Vc(r1, r2) =
{

0, 0 � r1, r2 < Rc,

∞, r1 � Rc or r2 � Rc
(2)

and the boundary conditions would require �(r1, r2) to vanish when r1 = Rc or when r2 = Rc.
Other types of penetrable cavities are possible; for example, Xie [14] considered spherical
Gaussian potential wells, whereas Sako and Diercksen [15, 16] considered various harmonic
constraining forms, both spherical and non-spherical, in their studies of the hydrogen negative
ion, the helium atom and 2-electron quantum dots. The main interest of the latter authors was
to investigate the spectra, density distribution and character of the three systems.

In the present paper we concentrate on helium enclosed within an impenetrable spherical
box but also consider briefly some other penetrable boxes. The methods developed are quite
general and may be used to investigate the properties of any spherically confined 2-electron
system.

The eigenfunctions �(r1, r2) and associated eigenenergies E are, of course, functions of
Rc but we do not usually indicate this dependence explicitly (on occasions where necessary
we add the superscript (Rc), or (∞), where (∞) indicates the unconfined atom).

3. Method

We use a variational approach to solve the Schrödinger equation (1). In order to satisfy the
Dirichlet boundary conditions that � vanish on the surface of the impenetrable confining
sphere we need to ensure the trial functions vanish there too. An easy way to do this is to
introduce cut-off functions

Wc(r1, r2) = wc(r1)wc(r2), (3)

2
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where wc(Rc) = 0. Several forms of wc(r) have been proposed and used, including the linear
form w(1)

c (r) = Rc − r [17, 18] and the quadratic form w(2)
c (r) = R2

c − r2 [19]. As well
as w(1)

c (r) we have also, in this work, employed the following non-linear form of the cut-off
function:

w(3)
c (r) =

(
1 − r

Rc

)
exp

(
− r

Rc

)
. (4)

We note that w(3)
c (r) has the desirable property that w(3)′

c (0) = 0 so, unlike w(1)
c (r), it does

not have a cusp at the origin. This feature leads to more rapid convergence of the variational
energies as the trial wavefunction becomes more flexible [19] and so w(3)

c (r) provides more
accurate lower bounds for ground-state energies than w(1)

c (r), especially for smaller basis set
expansions. Gorecki and Byers Brown [20] have described an iterative perturbation method
to determine an optimum cut-off function wc(r) when the unconfined-atom wavefunction is
known. However, in our approach, wc(r) is specified and the wavefunction is variationally
optimized.

To give a precise description of electron correlation effects, highly accurate calculations
for 2-electron atomic ions generally require the use of variational trial wavefunctions which
depend explicitly on r12, the electron–electron separation. Hylleraas-type functions of the
form

�(r1, r2) = A12

∑
nmk

Cnmkr
n
1 rm

2 rk
12 e−αr1−βr2−γ r12Yl1l2L(r̂1, r̂2), (5)

where A12 is an anti-symmetrization operator and Yl1l2L(r̂1, r̂2) denotes a vector-coupled
product of spherical harmonics of total angular momentum L, have long been used. In practice,
the calculations are usually performed using perimetric coordinates [21]. A difficulty with
the direct application of a variational method using trial functions (5) is that the terms in the
expansion effectively lose their linear independence as n,m and k are increased to make �

more flexible. To overcome this problem we have, instead, constructed symmetrized trial
functions of the form

�(r1, r2) =
∑
nmk

∑
ν

C
(ν)
nmkN

(ν)
nmk

[
ψ

(ν)
nmk(r1, r2, r12)Yl1l2L(r̂1, r̂2)

+ (−1)S+L+l1+l2ψ
(ν)
nmk(r2, r1, r12)Yl2l1L(r̂1, r̂2)

]
. (6)

In (6) N
(ν)
nmk is a normalization factor,

ψ
(ν)
nmk(r1, r2, r12) = 1

r1
φnλ(ανr1)

1

r2
φmμ(βνr2)gk(γνr12), (7)

where the normalized φnλ(r1) is defined in terms of the generalized Laguerre polynomial
L(λ)

n (r1) [22] by

φnλ(r1) =
(

n!

(n + λ)!

) 1
2

r
1
2 λ

1 L(λ)
n (r1) e− 1

2 r1 , (8)

with λ = 2l1 + 2, (μ = 2l2 + 2) and gk has the form

gk(γ r12) = rk
12 e−γ r12 . (9)

The index ν labels the values of the nonlinear parameters αν, βν and γν in the trial functions.
For fixed αν , {φnλ(ανr)}n=∞

n=0 is a complete orthonormal set of 1-electron functions, so trial
functions of the form (6) suffer much less from problems of linear dependence than do
functions of the form (5), as recognized by Pekeris [21].
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For an unconfined atom the Hamiltonian and overlap matrix elements needed in
the variational calculations can be evaluated using the angular-momentum re-coupling
techniques introduced by Drake [23] for the angular variables and numerical Gauss–Laguerre
quadrature for the radial variables. For example, consider the overlap matrix element
S12 = 〈�1(r1, r2)|�2(r1, r2)〉, where �1 and �2 are functions as specified by equation (6).
S12 can be written as a sum of terms of the form

2N1N2〈ψ1(r1, r2, r12)Yl1l2L(r̂1, r̂2)

+ (−1)S+L+l1+l2ψ1(r2, r1, r12)Yl2l1L(r̂1, r̂2)|ψ2(r1, r2, r12)Yl′1l
′
2L

(r̂1, r̂2)〉

= 2N1N2

[ ∑

1

C
1I
1(ψ1(r1, r2, r12)ψ2(r1, r2, r12))

+ (−1)S+L+l1+l2
∑

2

C
2I
2(ψ1(r2, r1, r12)ψ2(r1, r2, r12))

]
, (10)

where

I
(F ) = 1

2

∫ ∞

0
r1 dr1

∫ ∞

0
r2dr2

∫ r1+r2

|r1−r2|
F(r1, r2, r12)P
(cos θ12)r12 dr12 (11)

= 1

8

∫ ∞

0

∫ ∞

0

∫ ∞

0
r1r2r12F(r1, r2, r12)P
(cos θ12) dx dy dz (12)

with

r1 = 1
2 (x + z), r2 = 1

2 (y + x), r12 = 1
2 (z + y) (13)

and

cos θ12 = r2
1 + r2

2 − r2
12

2r1r2
. (14)

The angular coefficients C
 have been specified by Drake [23].
When expressed in the form (12) the integrals I
1(ψ1ψ2) and I
2(ψ1ψ2) can easily be

evaluated exactly by employing Gauss–Laguerre integration. Gauss–Laguerre quadrature is
also employed when the atom is confined by a penetrable potential (since the upper limits in
the triple integral (12) still remain infinite) but it is not suitable for the impenetrable case. We
then use equation (11), with the r1 and r2 upper integration infinite limits replaced by Rc, and
employ Gauss–Legendre quadrature instead.

The matrix elements 〈�1(r1, r2)|− Z
r1

− Z
r2

+ 1
r12

|�2(r1, r2)〉 can be evaluated in an identical

fashion. The calculation of 〈�1(r1, r2)|− 1
2∇2

1 − 1
2∇2

2 |�2(r1, r2)〉 proceeds via the expression

∇2
1

1

r1
φnλ(αr1)gk(γ r12)Yl1l2L(r̂1, r̂2)

= 1

r1

[
α2

4
− α

(
n + λ

2

)
r1

− n

r2
1

+
k(k + 1)

r2
12

− 2γ (k + 1)

r12
+ γ 2

+
r2

1 − r2
2 + r2

12

r1r12

(
n + λ

2 − 1

r1
− α

2

)(
k

r12
− γ

)]
φnλ(αr1)gk(γ r12)Yl1l2L(r̂1, r̂2)

+

√
n(n + λ)

r2
1

[
1

r1
− r2

1 − r2
2 + r2

12

r1r12

(
k

r12
− γ

)]
φn−1,λ(αr1)gk(γ r12)Yl1l2L(r̂1, r̂2)

− 2r2

r2
1 r12

(
k

r12
− γ

)
φnλ(αr1)gk(γ r12)

∑
k1k2

Wk1k2(l1l2L)Yk1k2L(r̂1, r̂2). (15)
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The algebraic coefficients Wk1k2(l1l2L) in (15) are given by

Wk1k2(l1l2L) = (−1)l1+k2+L

{
L k2 k1

1 l1 l2

}
〈k1‖r∇‖l1〉〈k2‖r̂‖l2〉, (16)

where

〈k‖r∇‖l〉 =
{

−l
√

l + 1 if k = l + 1
−(l + 1)

√
l if k = l − 1

(17)

and

〈k‖r̂‖l〉 =
{√

l + 1 if k = l + 1
−√

l if k = l − 1.
(18)

When a cut-off function wc(r1) is introduced we have the result

∇2
1

1

r1
φnλ(αr1)gk(γ r12)wc(r1)Yl1l2L(r̂1, r̂2) = wc(r1)∇2

1
1

r1
φnλ(αr1)gk(γ r12)Yl1l2L(r̂1, r̂2)

+w′
c(r1)

[
2

(
1

r1
φnλ(αr1)

)′
gk(γ r12)

+
r2

1 − r2
2 + r2

12

r1r12

(
1

r1
φnλ(αr1)

)
g′

k(γ r12)

]
Yl1l2L(r̂1, r̂2)

+
1

r1
φnλ(αr1)gk(γ r12)

[
w′′

c (r1) +
2

r1
w′

c(r1)

]
Yl1l2L(r̂1, r̂2), (19)

where (
1

r
φnλ(αr)

)′
=

(
n + 1

2λ − 1

r2
− α

2r

)
φnλ(αr) −

√
n(n + λ)

r2
φn−1,λ(αr) (20)

and the prime denotes differentiation with respect to the argument, i.e. either r1 or r12.
The Coulomb interactions become less important as the radius of the confining cavity

becomes small (in comparison to the unconfined atomic radius) and the system behaves more
and more like electrons in a spherical potential well. Thus, it has been suggested by Aquino
et al [17] that trial functions of the form (8), containing decaying exponential terms, may not
then be the most appropriate. Consequently, we have also used the solutions of the radial
equation (

d2

dr2
− l(l + 1)

r2

)
χnl(r) = εnlχnl(r) (21)

to construct basis functions of the form

φnl(r) = rn+lχnl(r), n = 0, 1, 2, . . . , (22)

to replace the generalized Laguerre functions φnλ(ανr1) and φmμ(βνr2) in (7). The solutions
to (21) are, of course, simply related to the spherical Bessel functions jl(r); for l = 0 these
solutions are

χn0(r) =
√

2

Rc
sin

(n + 1)πr

Rc
, n = 0, 1, 2, . . . , (23)

satisfying the Dirichlet boundary conditions, so it is not necessary to introduce cut-off functions
here. In our ground-state calculations we employ the functions (23) and evaluate integrals as
previously using Gauss–Legendre quadrature.
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Table 1. Convergence of ground-state energies for a helium atom at the centre of an impenetrable
spherical cavity of radius Rc as a function of the number of terms in the variational expansion. N
is such that n + m + k � N and NT is the corresponding number of terms in the expansion (6). For
each value of N the first row refers to the cut-off function w

(1)
c (r) and the second to w

(3)
c (r) (see

the text).

Rc

N NT 1.0 6.0 10.0 ∞
2 7 1.018 1419 −2.898 9735 −2.901 7479 −2.903 1271

1.016 3470 −2.901 7323 −2.902 7158
3 13 1.015 8358 −2.902 8854 −2.903 4952 −2.903 6364

1.015 7856 −2.903 3025 −2.903 5858
4 22 1.015 7595 −2.903 5455 −2.903 7042 −2.903 7079

1.015 7582 −2.903 6257 −2.903 7107
5 34 1.015 7555 −2.903 6526 −2.903 7193 −2.903 7210

1.015 7556 −2.903 6716 −2.903 7196
6 50 1.015 7551 −2.903 6851 −2.903 7234 −2.903 7237

1.015 7551 −2.903 6955 −2.903 7231
7 70 1.015 7550 −2.903 6922 −2.903 7239 −2.903 7241

1.015 7550 −2.903 6938 −2.903 7238
8 95 1.015 7550 −2.903 6951 −2.903 7242 −2.903 7243

1.015 7550 −2.903 6955 −2.903 7241

4. Calculations and results

4.1. Impenetrable walls

We have calculated ground-state energies and pressures for a range of confining radii Rc. In
practice, the sum over ν in (6) was reduced to a single term and all terms in the summation
satisfying n + m + k � 8 were included, giving a total of 95 terms. When the same limit
was imposed on the free-atom calculation the value −2.903 724 31 resulted for the energy,
in excellent agreement with the result −2.903 724 377 obtained in the extensive and highly
accurate calculations of Drake and Yan [24] and Hesse and Baye [12]. The parameters α and
β were both chosen to have the fixed value 4, while γ was varied to minimize the calculated
energy. The optimum value for γ depends on the cavity radius. For smaller Rc the energy
depends only very slightly on γ and γ = 0 which is a suitable choice here. As Rc increased
it was found that γ initially decreased slowly (to approximately −0.12 at Rc = 3) but then
increased to a final value of approximately 0.47 for the unconfined atom. The choice of γ

is not a critical factor in determining the accuracy of the computed energies; for example,
for the free atom γ = 0 gave a ground-state energy of −2.903 724 09, as opposed to the
final converged value −2.903 724 31 with γ = 0.47. The number of terms included in the
expansion is much more crucial for obtaining an accurate result. This is demonstrated in
table 1 which shows how the energy converges as the number of terms in the variational
expansions is increased. The table also demonstrates the superiority of the cut-off function
w(3)

c over the linear cut-off function w(1)
c . As can be observed, however, the differences

diminish as the expansion length increases so, again, this choice is not critical, provided a
sufficiently large expansion is employed.

The Laguerre basis functions (8) gave lower energies than the basis functions (23) for Rc

greater than 0.5. For values of Rc smaller than 0.5 the Laguerre basis rapidly became unstable

6
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Table 2. Ground-state energies of a helium atom confined at the centre of an impenetrable spherical
cavity of radius Rc in comparison with the results of other workers. The cut-off functions used are
w

(1)
c (r) = Rc − r and w

(3)
c (r) = (1− r/Rc) exp(−r/Rc). The pressure P, in atm, is also tabulated.

Rc w(1)
c w(3)

c Other P (atm)a

0.5 22.741 303 22.741 303 22.7437b, 22.7413c 0.1167 × 1011

1.0 1.015 755 1.015 755 1.0176b, 1.0158c 0.2762 × 109

1.0142 ± 0.0003d

2.0 −2.604 038 −2.604 038 −2.6026b,− 2.6040c 0.4018 × 107

−2.604 03e,−2.6051 ± 0.0002d

3.0 −2.872 495 −2.872 495 −2.8708b,− 2.8725c 0.1798 × 106

−2.872 46e,−2.8727 ± 0.0004d

4.0 −2.900 485 −2.900 485 −2.8988b,− 2.9004c 0.1074 × 105

−2.900 42e,−2.9003 ± 0.0006d

5.0 −2.903 410 −2.903 410 −2.9020b,− 2.9034c 0.6882 × 103

−2.903 37e,−2.9032 ± 0.0005d

6.0 −2.903 695 −2.903 696 −2.9024b,− 2.9037c 0.4434 × 102

−2.903 68e,−2.9035 ± 0.0004d

8.0 −2.903 724 −2.903 724 −2.9025b,− 2.9037c 0.1868 × 100

−2.903 71e

10.0 −2.903 724 −2.903 724 −2.9037c, − 2.903 72e

20.0 −2.903 724 −2.903 724

a Present calculation with the cut-off function w(3)
c (r).

b [31].
c [18].
d [25].
e [26].

because of linear dependence problems, so it was not therefore useful for accurate calculations
in this range of cavity radii. For very small Rc the Coulomb interactions can be treated as
perturbations, resulting in the following expansion for the ground-state energy [27]

E = E0

R2
c

+
E1

Rc
+ E2 + · · · . (24)

We have E0 = π2 and a straightforward calculation reveals that E1 is given by

E1 = −4Ci(2π) + 2 − 2Si(2π) − Si(4π)

2π
, (25)

where Si(x) and Ci(x) are, respectively, the sin and cos integrals [22]. By evaluating E
as described in the previous paragraph for a series of small values of Rc we deduce the
approximate value E2 = −0.007 414, so that

E = 9.869 6044

R2
c

− 7.964 5404

Rc
− 0.007 414 + · · · . (26)

For Rc = 0.1, equation (26) gives E = 907.3076, in comparison to our variational value
907.5625 and its relative accuracy will, of course, increase as Rc takes even smaller values.

In table 2 we compare our energies with those obtained by other workers, and we also
include our calculated pressures P evaluated as

P = − 1

4πR2
c

dE

dRc
. (27)

7
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As discussed above, the energies initially fall off very rapidly as Rc increases but subsequently
they rapidly approach the asymptotic unconfined-atom value. The pressures initially decrease
even faster than the energies for small increasing Rc but then approach zero extremely rapidly
as Rc becomes larger. We have used a finite difference scheme to estimate the derivative
dE/dR and are unable to get reliable values of P for the larger values of Rc. We note that
our values are in good agreement with those obtained by Aquino et al [17] for Rc � 4 but
that the disagreement increases markedly for larger Rc. For larger Rc, the pressure depends
very sensitively on the size of the basis expansion and, in fact, Aquino et al [17] find a
difference of approximately a factor of 2 when they double the size of their basis set for
Rc = 6, so their result has obviously not converged for this value of the confining radius.
By examining the convergence behaviour as the basis size increases we believe that we have
obtained convergence to three significant figures for Rc � 6.

The quantum Monte Carlo calculations of Joslin and Goldman [25] have been referred
to in the past as ‘exact’ and ‘nearly exact’ (see, for example, [19, 26]). However, it is clear
from table 2 that they are not highly reliable for the smaller values of Rc and, in fact, the more
accurate results fall outside Joslin and Goldman’s stated error bounds for Rc < 3, though they
do become more reliable as Rc increases, but the error bounds are then not sufficiently tight. In
addition, they are computationally very expensive compared to most other calculations. Our
ground-state energy results agree, to the four decimal places quoted, with those presented by
Flores-Riveros and Rodrigues-Contreras [18] who employed fewer terms in their generalized
Hylleraas basis set expansions. There is harmony with the five-decimal-place values quoted
by Aquino et al [26], who also employed a generalized Hylleraas expansion, but the present
values are lower in all the cases quoted.

We have also computed the atomic ionization radius IRc , that is, the critical radius below
which the atom has a higher energy than He+. The required He+ energies were obtained from
a highly accurate small-Rc expansion in inverse powers of Rc [27]. We find IRc = 1.385 34,
confirming the value 1.385 of Aquino et al [17] and in fair accord with the Sen et al [28]
and with Ludẽna [30] who find, respectively, 1.351 and 1.413. In addition, the critical cavity
radius at which E = 0 is found to be Rc = 1.101 07 which again agrees with the result 1.1011
of Aquino et al [17], and may be compared to the values of 1.1013 of Gimarc [29] and 1.1019
of Ludẽna [30].

4.2. Penetrable walls

In this section we present some results for the following two penetrable walls:

Vc(r1, r2) = V0

[
2 − exp

(
− r2

1

R2
c

)
− exp

(
− r2

2

R2
c

)]
, (28)

and

Vc(r1, r2) = 1
2ω2

0

(
r2

1 + r2
2

)
, (29)

which have also been investigated by, respectively, Xie [14] and Sako and Diercksen [15, 16].
The latter authors present results graphically so we are unable to give comparisons with their
work. In table 3 we compare our energies with those presented by Xie [14] for the range of
V0 and Rc values which he considered.

It will be observed that the present energies are, in all cases, lower than those of Xie [14].
For large values of Rc the confining potential can be treated as a small perturbation to the
unconfined system. To illustrate this we have also included in table 3 the deviation of E(Rc)

from E(∞) (i.e. V0 = 0) and it can be seen that this is indeed the case. Xie [14] quotes the
result E(∞) = −2.8999 for his unconfined ground-state energy but his confined energies for
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Table 3. Ground-state energies of a helium atom confined at the centre of a Gaussian potential
well (see equation (28) of text). For each Rc the first row lists the calculated energy while the
second gives the energy elevation arising from the confining potential.

V0

25 50 100

Rc Present Xie [14] Present Xie [14] Present Xie [14]

1 9.0057 14.6634 15.8461 24.7599 25.9833 39.6224
11.9094 18.7499 28.8870

2 2.2056 5.1046 5.2789 9.7466 9.9194 16.6741
5.1094 8.1826 12.8231

3 0.0586 1.9068 1.9341 4.7940 4.8126 9.1566
2.9623 4.8378 7.7163

4 −0.937 968 0.3757 0.363 210 2.4125 2.389 531 5.5249
1.965 756 3.266 934 5.293 255

5 −1.493 459 −0.4799 −0.523 686 1.0432 1.006 94 3..4227
1.410 265 2.380 038 3.910 418

10 −2.440 318 −2.0472 −2.077 865 −1.4363 −1.474 872 −0.4511
0.463 406 0.825 859 1.428 852

15 −2.675 236 −2.4564 −2.483 038 −2.1187 −2.150 974 −1.5555
0.228 487 0.420 689 0.752 750

25 −2.814 573 −2.7109 −2.733 675 −2.5612 −2.586 843 −2.2987
0.089 150 0.170 051 0.316 880

50 −2.880 334 −2.8369 −2.857 740 −2.7929 −2.814 439 −2.7104
0.023 391 0.045 984 0.089 285

100 −2.897 789 −2.8715 −2.891 912 −2.8598 −2.880 323 −2.8369
0.005 936 0.011 812 0.023 401

Table 4. Ground-state energies of a helium atom confined at the centre of a harmonic potential
well (see equation (29) of text). The first row lists the energies while the second specifies the
perturbation caused by the confining potential.

ω0

0.01 0.05 0.1 0.25 0.5 1.0

−2.903 605 −2.900 748 −2.891 910 −2.833 069 −2.648 703 −2.073 035
0.000 119 0.002 976 0.011 814 0.070 655 0.255 025 0.830 689

the largest values of Rc are not consistent with this value; rather, a value in the neighbourhood
of −2.883 would be more appropriate. It would appear that, overall, his calculations are not
of high accuracy.

Table 4 lists ground-state energies for the harmonic potential (29) for a series of values
of the parameter ω0. The deviation of the energy from the unconfined-atom value is also
presented and it can be seen that for small ω0 this deviation is approximately linear in ω2

0, as
can be expected because the confining potential is then a small perturbation of the free atom.

Both potentials (28) and (29) may be used to model the effects of pressure on a helium
atom. The softer potential (28) has a finite height V0, whereas the harder potential (29)
becomes infinite as r → ∞, so (28) should provide a more realistic model in practice. It also
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has two variable parameters, V0 and Rc, to choose in fitting experimental data, while (29) has
only one, namely ω0.

5. Conclusions

We have performed accurate calculations, employing expansions in terms of Hylleraas-type
basis functions including the interelectronic distance r12, of the ground-state energies of a
helium atom confined at the centre of a spherical cavity. Both penetrable and impenetrable
cavities have been investigated. For an impenetrable cavity the asymptotic form of the energy
as the cavity radius Rc becomes small is given, correct to terms of O(Rc), by equation (26), and
the energies of the atom under pressure have been evaluated for a series of values of Rc. The
ground-state energies of the atom confined by Gaussian and harmonic penetrable potentials
have also been calculated and the results are considered to be the most reliable so far obtained.
The numerical procedures employed in the present calculations can easily be applied to any
spherical confining potential and to excited states and properties, such as polarizabilities, of
helium-like systems. The wavelengths of spectral lines decrease as the pressure increases [32]
and it would therefore be of interest to extend the current calculations to excited states.
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